The new wildfire reality: mapping a response

ESRI Australia

By Anthony Schultz*
Wednesday, 13 March, 2024


The new wildfire reality: mapping a response

A firefighter-turned-researcher is helping pioneer data-driven solutions to tackle today’s unprecedented wildfires.

Chris Dunn, Assistant Professor at Oregon State University’s College of Forestry, spent seven years fighting fires in Oregon and has seen the challenges firsthand. Firefighters must make urgent decisions with limited information. Often, they can only understand situations by physically entering dangerous scenarios.

As a firefighter, Dunn was full of questions. What if firefighters could already know the location and condition of all possible fire control points? What if they could predict the best places to catch each blaze? What if responses were already planned for most scenarios? What if mitigation efforts had already happened in the right places to ensure their success? What if they knew exactly when and where fires could be beneficial?

Today, the questions can now be answered using maps, geospatial analytics and the power of collaboration.

Drawing the lines that contain fires

Dunn and colleagues from the US Forest Service’s Wildfire Risk Management Science Team at the Rocky Mountain Research Station are now using sophisticated mapping to give fire planners the information they need ahead of time. These tools are helping firefighters and communities come together to successfully manage fires.

The map-centric framework the team co-developed is known as PODs (Potential Operational Delineations). PODs are areas on a map whose border lines are human-made or natural fire-stopping boundaries such as roads, ridges and water. PODs can range in size from a few hundred to thousands of acres.

These seemingly simple boundaries are built on a wealth of data. To create PODs, planners examine and divide the landscape for fire management, considering geographic features rather than property lines. Wherever a fire starts, a shared map shows which POD it’s inside of, and therefore the best places and opportunities to stop it.

The data behind the maps

PODs are built using geographic information system (GIS) technology, sophisticated mapping software that enables unlimited information about the relevant landscape to be included and analysed.

Dunn first encountered GIS in the 1990s as an undergraduate. He realised that since fires occur in space and time, GIS technology could help him better understand and respond to them. He took one of the earliest programs offered in spatial information management systems and added it as a minor to his Forest Management degree at Colorado State University.

Now, Dunn combines his firefighting experience and GIS knowledge to develop and implement PODs. He uses GIS to simplify complex data for fire management, transforming it into something operational and useful.

Three main layers of data and analysis come together within GIS to give PODs their power:

  • A risk map: The Quantitative Wildfire Risk Assessment is a baseline map that shows both the potential chance of wildfire in any area and the value of anything within it. For example, areas with homes, protected wildlife, community water supplies, timber or powerlines carry higher value and therefore greater risk.
  • An atlas of the best places to control fires: Potential Control Locations show the probability of successful fire containment from specific areas such as such as roads, ridges and rivers. The atlas factors in how each feature has worked or not worked to control previous blazes.
  • A firefighting difficulty evaluation: The Suppression Difficulty Index is a visual representation of the effort required to suppress fire across the landscape. This data prioritises firefighter safety and represents how they operate; for example, steep slopes are more difficult and hazardous to work in than flatter areas.
     

These tools and data are the jumping-off point for starting a fire planning conversation using PODs. Next, planners need to enhance the data with local knowledge.

The PODs process leverages a series of analytical tools and maps to engage land managers, fire staff and their partners to make risk-informed fire response decisions. Photo courtesy of Chris Dunn.

From mental notes to maps

In developing PODs for a specific area, fire managers start by holding collaborative workshops with community leaders. They collaborate in person and online via GIS maps and other digital tools. In addition to data points such as risk assessment, control locations and firefighting difficulty, the GIS maps show roads and trails, watershed boundaries, structure locations and satellite imagery of the impacts of past fires.

Firefighters and land managers bring invaluable local knowledge and expertise to the table, much of it unwritten. The PODs workshops are a way of institutionalising knowledge from fire experts so it can be easily shared and used by anyone who might need it.

“We blend the analytics with the local knowledge to make sure we’re not biased towards local knowledge and we’re not missing something in the analytics,” Dunn said. “You bring them together and you get the best outcome.”

This collaboration is critical because fires don’t recognise property lines or administrative boundaries. For example, the best place to stop a fire might be a road that runs through private property, so performing fuel reduction there might be crucial to future success. To create the best conditions for firefighters and the best outcomes for the public, people need to work together in shared stewardship of the land.

Dunn has found maps to be the clearest way to develop this common understanding of risks, management opportunities and desired outcomes.

PODs are developed by land managers through a series of collaborative workshops integrating local knowledge and fire analytics with the purpose of informing wildfire response and planning. Photo courtesy of Chris Dunn.

Moving from maps to action

After initial workshops are completed, control points are verified in the field, POD boundaries are adjusted as needed and any new information can be added to the shared map. Then PODs become operational — a springboard for action such as planning prescribed burns, allocating funding to harden boundaries and communicating with any affected landowners.

Ashland, Oregon, is one community working with Dunn and the Forest Service to implement PODs. The valley community is surrounded by wildfire risk on all sides and narrowly escaped destruction during the Almeda Drive Fire in 2020. It’s also leading the way in data-driven fire mitigation and planning.

Dunn has worked with Ashland leaders to hold three PODs planning workshops, looking at the broader landscape of two million acres and refining a smaller area closest to the town. They prioritised protecting the municipal watershed and the town itself, paying special attention to the condition of boundaries most critical to those areas. Now they’re using that work to guide prescribed burns across Forest Service, municipal and private forests, focusing on areas where initial fuel reduction has already been completed under the Ashland Forest Resiliency project.

According to Chris Chambers, Ashland Fire & Rescue’s Wildfire Division Chief, “We use PODs to help prioritise where we put prescribed burns on the landscape and where to plan future fuel treatments on private and municipal land. We won’t have enough money to do everything that we want to do everywhere, so it’s best to put our money in places where it’s going to matter the most.”

Ashland leaders are implementing PODs down to the community level in a very detailed way. Their level of collaboration is also unprecedented, with around 95 people involved. Having access to GIS technology has facilitated city leadership’s collaboration with private landowners and partner agencies to create a unified plan. “We need to come together, and the data and maps help us do that. Maps help show people why action is needed,” Dunn said.

Maps guide important conversations about fire suppression tactics. Photo courtesy of Chris Dunn.

Shaping the future of fire management

As Dunn and his colleagues have been working to develop and test PODs, word has been spreading.

The data-driven approach and its proven success motivated US Forest Service leaders to champion the concept to the highest levels. Thanks to these advocates, $100 million in funding for PODs planning was explicitly embedded in the Infrastructure Investment and Jobs Act in 2021, with an additional $500 million allocated to hardening PODs boundaries.

While Dunn is excited to see adoption in national parks and forests, he knows PODs also have the potential to transform the plight of fire-prone communities. He hopes to see the approach thoughtfully implemented everywhere in a wall-to-wall network of smart maps. And with GIS technology, virtually limitless data can be added to create a fully integrated system that supports fire managers in every phase of prevention, planning and response.

“All of this is GIS. I wouldn’t do anything without it. Maps are the most effective communication tool to develop a truly functional strategy,” Dunn said.

*Anthony Schultz is Director of Wildland Fire Solutions at Esri. His background in wildland fire management and operations began as a wildland firefighter and progressed to responsibility for planning, program direction and coordination of Wyoming’s wildland fire program as the state’s Fire Management Officer (FMO). As a wildland firefighter, he worked for several federal agencies including the Bureau of Land Management and the National Park Service.

This article was originally published on the Esri blog and has been reproduced here with permission.

Top image: Using input from the field helps inform when the best ridge is not necessarily the right ridge to stop the advancement of a wildfire. Photo courtesy of Chris Dunn.

Originally published here.

Related Articles

ARCIA update: LMR is not dead yet

Be it mining, rail, public safety, transport or utilities, everyone is embracing new technology...

Towards 1 Tbps throughput using sub-terahertz bands

In order to enable the near-instantaneous communication promised by 6G, ultrahigh data speeds...

ARCIA update: welcome to 2024

ARCIA has an extensive event plan for 2024, including one-day conferences and networking dinner...


  • All content Copyright © 2024 Westwick-Farrow Pty Ltd